Rotational inertia is additive ============================== For a system composed of several parts, its total rotational inertia is the sum of the rotational inertia of each part of the system. **Conditions:** #. The rotational inertia is calculated for the same axis for all parts of the system. **Links:** #. `Wikipedia, see second paragraph `__. .. py:currentmodule:: symplyphysics.laws.kinematics.rotational_inertia.rotational_inertia_is_additive .. py:data:: total_rotational_inertia Total :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` of the system. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: index Index assigned to each part of the system. .. py:data:: rotational_inertia :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` of the :math:`k`-th part of the system. Symbol: :code:`I[k]` Latex: :math:`{I}_{k}` Dimension: :code:`length**2*mass` .. py:data:: law :code:`I = Sum(I[k], k)` Latex: .. math:: I = \sum_k {I}_{k}