Rotational inertia about axis and through center of mass ======================================================== The *parallel-axis theorem* relates the rotational inertia of a body about any axis to that of the same body about a parallel axis that extends through the body's center of mass of mass). **Conditions:** #. The two axes must be parallel to each other. #. The axis used in the calculation of :math:`I_\text{com}` must pass through the body's center of mass. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.kinematics.rotational_inertia.rotational_inertia_about_axis_and_through_center_of_mass .. py:data:: rotational_inertia :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` about some axis. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: rotational_inertia_through_com :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` about an axis that is parallel to the given one and passes through the center of mass. Symbol: :code:`I_com` Latex: :math:`I_\text{com}` Dimension: :code:`length**2*mass` .. py:data:: mass The :attr:`~symplyphysics.symbols.basic.mass` of the body. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: distance_between_axes :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance` between the axes. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: law :code:`I = I_com + m * d^2` Latex: .. math:: I = I_\text{com} + m d^{2}