Position via constant acceleration and time =========================================== If a body is moving with a constant acceleration, its position in space is a quadratic function of time. **Conditions:** #. Acceleration is constant, i.e. :math:`\frac{d a}{d t} = 0.` **Links:** #. `Wikipedia, vector counterpart of this law `__. .. py:currentmodule:: symplyphysics.laws.kinematics.position_via_constant_acceleration_and_time .. py:data:: final_position :attr:`~symplyphysics.symbols.classical_mechanics.position` at :attr:`~time`. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: initial_position :attr:`~symplyphysics.symbols.classical_mechanics.position` at :math:`t = 0`. Symbol: :code:`x_0` Latex: :math:`x_{0}` Dimension: :code:`length` .. py:data:: initial_speed :attr:`~symplyphysics.symbols.classical_mechanics.speed` at :math:`t = 0`. Symbol: :code:`v_0` Latex: :math:`v_{0}` Dimension: :code:`velocity` .. py:data:: acceleration Constant :attr:`~symplyphysics.symbols.classical_mechanics.acceleration`. Symbol: :code:`a` Latex: :math:`a` Dimension: :code:`acceleration` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time` at which :attr:`~final_position` is measured. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: law :code:`x = x_0 + v_0 * t + a * t^2 / 2` Latex: .. math:: x = x_{0} + v_{0} t + \frac{a t^{2}}{2}