Displacement in underdamping ============================ In the presence of a damping force in the oscillating system, the system's behavior depends on the value of the damping ratio. When it is less than :math:`1`, the system oscillates with a slightly different frequency than in the undamped case, and its amplitude decreasing to zero. This behavior is also known as *underdamping*. **Conditions:** #. The system is underdamped, i.e. its damping ratio :math:`\zeta < 1`. .. py:currentmodule:: symplyphysics.laws.kinematics.damped_oscillations.displacement_in_underdamping .. py:data:: displacement Displacement from rest, usually a function of time. See :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance`. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time` at which :attr:`~displacement` is measured. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: scaling_coefficient Scaling coefficient to be found using initial conditions. Symbol: :code:`a` Latex: :math:`a` Dimension: :code:`length` .. py:data:: exponential_decay_constant :attr:`~symplyphysics.symbols.basic.exponential_decay_constant` of the oscillator. Symbol: :code:`lambda` Latex: :math:`\lambda` Dimension: :code:`1/time` .. py:data:: damped_angular_frequency :doc:`Damped angular frequency ` of the oscillator. See :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency`. Symbol: :code:`w_d` Latex: :math:`\omega_\text{d}` Dimension: :code:`angle/time` .. py:data:: phase_shift :attr:`~symplyphysics.symbols.classical_mechanics.phase_shift` of the oscillations, i.e. the phase at :math:`t = 0`. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: law :code:`d = a * exp(-lambda * t) * cos(w_d * t + phi)` Latex: .. math:: d = a \exp{\left(- \lambda t \right)} \cos{\left(\omega_\text{d} t + \varphi \right)}