Displacement in critical damping ================================ In the presence of a damping force in the oscillating system, the system's behavior depends on the value of the damping ratio. When it is equal to :math:`1`, the system returns to equilibrium as quickly as possible without oscillating, but overshoot can occur if initial velocity is nonzero. This behavior is also called *critical damping*. **Conditions:** #. The system is critically damped, i.e. its damping ratio :math:`\zeta = 1`. .. py:currentmodule:: symplyphysics.laws.kinematics.damped_oscillations.displacement_in_critical_damping .. py:data:: displacement Displacement from rest, usually a function of time. See :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance`. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time` at which :attr:`~displacement` is measured. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: undamped_angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the undamped oscillator. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: initial_position Initial :attr:`~symplyphysics.symbols.classical_mechanics.position` of the oscillator. Symbol: :code:`x_0` Latex: :math:`x_{0}` Dimension: :code:`length` .. py:data:: initial_speed Initial :attr:`~symplyphysics.symbols.classical_mechanics.speed` of the oscillator. Symbol: :code:`v_0` Latex: :math:`v_{0}` Dimension: :code:`velocity` .. py:data:: law :code:`d = exp(-w * t) * (x_0 + (v_0 + x_0 * w) * t)` Latex: .. math:: d = \exp{\left(- \omega t \right)} \left(x_{0} + \left(v_{0} + x_{0} \omega\right) t\right)