Angular momentum is rotational inertia times angular speed ========================================================== For a rigid body rotating around a fixed axis, the component of its angular momentum parallel to the rotational axis is found as the product of the body's rotational inertia and the magnitude of its angular velocity. **Conditions:** #. The body is rigid. #. The axis of rotation is fixed. **Links:** #. `Wikipedia, vector counterpart of this law `__. .. py:currentmodule:: symplyphysics.laws.kinematics.angular_momentum_is_rotational_inertia_times_angular_speed .. py:data:: angular_momentum Component of the vector of :attr:`~symplyphysics.symbols.classical_mechanics.angular_momentum` parallel to the rotational axis. Symbol: :code:`L` Latex: :math:`L` Dimension: :code:`length**2*mass/time` .. py:data:: rotational_inertia :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` of the body. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: angular_speed :attr:`~symplyphysics.symbols.classical_mechanics.angular_speed` of the body. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: law :code:`L = I * w` Latex: .. math:: L = I \omega