Pressure difference at pipe ends from dynamic viscosity and flow rate ===================================================================== In non-ideal fluid mechanics, the Hagen—Poiseuille equation is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw. **Conditions:** #. The fluid is incompressible and Newtonian. #. The flow of the fluid is laminar. #. The pipe is long enough for the flow to be laminar. #. The pipe has constant cross section. **Links:** #. `Wikipedia, first part of the first equation `__. .. TODO: rename file to use descriptive name .. py:currentmodule:: symplyphysics.laws.hydro.hagen_poiseuille_equation .. py:data:: dynamic_viscosity :attr:`~symplyphysics.symbols.classical_mechanics.dynamic_viscosity` of the fluid. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`pressure*time` .. py:data:: length :attr:`~symplyphysics.symbols.classical_mechanics.length` of the pipe. Symbol: :code:`l` Latex: :math:`l` Dimension: :code:`length` .. py:data:: flow_rate :attr:`~symplyphysics.symbols.classical_mechanics.volumetric_flow_rate` of the fluid through the pipe. Symbol: :code:`Q` Latex: :math:`Q` Dimension: :code:`volume/time` .. py:data:: radius :attr:`~symplyphysics.symbols.classical_mechanics.radius` of the pipe. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: pressure_difference Difference in :attr:`~symplyphysics.symbols.classical_mechanics.pressure` between the two ends of the pipe. Symbol: :code:`Delta(p)` Latex: :math:`\Delta p` Dimension: :code:`pressure` .. py:data:: law :code:`Delta(p) = 8 * mu * l * Q / (pi * r^4)` Latex: .. math:: \Delta p = \frac{8 \mu l Q}{\pi r^{4}}