Relative acceleration from force and acceleration due to gravity ================================================================ Suppose a reference frame :math:`S'` is fixed to a moving body :math:`A` (e.g. Earth). For some body :math:`B` we can write a vector equation of motion relative to :math:`S'` in the gravitational field of body :math:`A` with the rotation of body :math:`A` taken into consideration. From this, we can gather the meaning of the acceleration due to gravity, also known as the free fall acceleration: it is the acceleration of body :math:`B` relative to :math:`S'` in the absence of external forces (:math:`\vec F = 0`) in the stationary case (the velocity of body :math:`B` relative to :math:`S'` is zero, i.e. :math:`\vec v = 0` and :math:`{\vec a}_\text{Cor} = 0`). .. TODO: add link to source .. py:currentmodule:: symplyphysics.laws.gravity.vector.relative_acceleration_from_force_and_acceleration_due_to_gravity .. py:data:: relative_acceleration Vector of relative :attr:`~symplyphysics.symbols.classical_mechanics.acceleration` of body :math:`B` relative to :math:`S'` Symbol: :code:`a_rel` Latex: :math:`{\vec a}_\text{rel}` Dimension: :code:`acceleration` .. py:data:: force Vector of the net non-gravitational :attr:`~symplyphysics.symbols.classical_mechanics.force` exerted on body :math:`B`. Symbol: :code:`F` Latex: :math:`{\vec F}` Dimension: :code:`force` .. py:data:: mass :attr:`~symplyphysics.symbols.basic.mass` of body :math:`B`. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: coriolis_acceleration Vector of the Coriolis :attr:`~symplyphysics.symbols.classical_mechanics.acceleration` of body :math:`B`. .. TODO: add link to vector law Symbol: :code:`a_Cor` Latex: :math:`{\vec a}_\text{Cor}` Dimension: :code:`acceleration` .. py:data:: acceleration_due_to_gravity Vector of the acceleration due to gravity. Symbol: :code:`g` Latex: :math:`{\vec g}` Dimension: :code:`acceleration` .. py:data:: law :code:`a_rel = g - a_Cor + F / m` Latex: .. math:: {\vec a}_\text{rel} = {\vec g} - {\vec a}_\text{Cor} + \frac{{\vec F}}{m}