Radius of geostationary orbit ============================= A geostationary orbit is a circular orbit located above the Earth's equator (0° latitude), where an artificial satellite orbits the planet with an angular velocity equal to the angular speed of the Earth's rotation around its axis. **Notation:** #. :math:`G` (:code:`G`) is :attr:`~symplyphysics.quantities.gravitational_constant`. **Links:** #. `Wikipedia, possible formula derivable from here `__. .. TODO: find link with exact formula .. py:currentmodule:: symplyphysics.laws.gravity.radius_of_geostationary_orbit .. py:data:: orbital_radius :attr:`~symplyphysics.symbols.classical_mechanics.radius` of the satellite's geostationary orbit. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: planet_mass :attr:`~symplyphysics.symbols.basic.mass` of the attracting body (planet). Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: satellite_angular_speed :attr:`~symplyphysics.symbols.classical_mechanics.angular_speed` of the satellite's rotation. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: law :code:`r = (G * m / w^2)^(1/3)` Latex: .. math:: r = \sqrt[3]{\frac{G m}{\omega^{2}}}