Semiminor axis of elliptical orbit via orbit parameters ======================================================= The minor semiaxis can be found as a function of the sector speed of the planet, the major semiaxis of its orbit, and the mass of body that attracts it, such as the Sun. **Notation:** #. :math:`G` (:code:`G`) is :attr:`~symplyphysics.quantities.gravitational_constant`. **Links:** #. Sivukhin, D.V. (1979). *Obshchiy kurs fiziki* [General course of Physics], vol. 1, p. 318, (58.5) .. py:currentmodule:: symplyphysics.laws.gravity.radial_motion.semiminor_axis_of_elliptical_orbit_via_orbit_parameters .. py:data:: semiminor_axis The :attr:`~symplyphysics.symbols.classical_mechanics.semiminor_axis` of the planet's orbit. Symbol: :code:`b` Latex: :math:`b` Dimension: :code:`length` .. py:data:: sector_speed The :attr:`~symplyphysics.symbols.classical_mechanics.sector_speed` of the planet, i.e. the area swept by the planet per unit time. Symbol: :code:`sigma` Latex: :math:`\sigma` Dimension: :code:`area/time` .. py:data:: semimajor_axis The :attr:`~symplyphysics.symbols.classical_mechanics.semimajor_axis` of the planet's orbit. Symbol: :code:`a` Latex: :math:`a` Dimension: :code:`length` .. py:data:: attracting_mass The :attr:`~symplyphysics.symbols.basic.mass` of the attracting body, such as the Sun. Symbol: :code:`M` Latex: :math:`M` Dimension: :code:`mass` .. py:data:: law :code:`b = 2 * sigma * sqrt(a / (G * M))` Latex: .. math:: b = 2 \sigma \sqrt{\frac{a}{G M}}