Potential energy of radial planetary motion =========================================== The total mechanical energy of the planet can be viewed as the sum of the kinetic and potential energy. The potential energy is in turn the sum of the potential energy due to the gravitational interaction between the planet and the Sun, and the the energy of the tangential motion, which depends on the planet's angular momentum. **Links:** #. Sivukhin, D.V. (1979). *Obshchiy kurs fiziki* [General course of Physics], vol. 1, p. 315. .. py:currentmodule:: symplyphysics.laws.gravity.radial_motion.potential_energy_of_planetary_motion .. py:data:: total_potential_energy The total :attr:`~symplyphysics.symbols.classical_mechanics.potential_energy` of the planet. Symbol: :code:`U_tot` Latex: :math:`U_\text{tot}` Dimension: :code:`energy` .. py:data:: gravitational_potential_energy The :attr:`~symplyphysics.symbols.classical_mechanics.potential_energy` of the planet due to the gravitational interaction of the planet and the star. Symbol: :code:`U_gr` Latex: :math:`U_\text{gr}` Dimension: :code:`energy` .. py:data:: angular_momentum The :attr:`~symplyphysics.symbols.classical_mechanics.angular_momentum` of the planet. Symbol: :code:`L` Latex: :math:`L` Dimension: :code:`length**2*mass/time` .. py:data:: planetary_mass The :attr:`~symplyphysics.symbols.basic.mass` of the planet. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: distance The :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance` between the star and the planet. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: law :code:`U_tot = U_gr + L^2 / (2 * m * d^2)` Latex: .. math:: U_\text{tot} = U_\text{gr} + \frac{L^{2}}{2 m d^{2}}