Orbital speed from semimajor axis and planet mass ================================================= The orbital speed of a body is the speed at which it rotates around the barycenter of the system, usually around a more massive body. It can be calculated from the mass of the planet and the orbit configuration parameters. **Notation:** #. :math:`G` (:code:`G`) is :attr:`~symplyphysics.quantities.gravitational_constant`. **Conditions:** #. The distance to the barycenter :math:`r` must not exceed the length :math:`a` of the semi-major axis of the orbit. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.gravity.orbital_velocity_from_length_of_large_half_axis_and_planet_mass .. py:data:: orbital_speed Orbital :attr:`~symplyphysics.symbols.classical_mechanics.speed` of the satellite. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: distance :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance` at which the speed is calculated. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: semimajor_axis :attr:`~symplyphysics.symbols.classical_mechanics.semimajor_axis` of the satellite's orbit. Symbol: :code:`a` Latex: :math:`a` Dimension: :code:`length` .. py:data:: planet_mass :attr:`~symplyphysics.symbols.basic.mass` of the planet. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: law :code:`v = sqrt(G * m * (2 / d - 1 / a))` Latex: .. math:: v = \sqrt{G m \left(\frac{2}{d} - \frac{1}{a}\right)}