Dot product is proportional to cosine of angle between vectors ============================================================== The dot product of two vectors is a scalar binary operation that can be defined as the product of the norms of the vectors and the cosine of the angle between them. Also see the :ref:`vector law `. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.geometry.dot_product_is_proportional_to_cosine_between_vectors .. py:data:: dot_product Dot product between :math:`\vec u` and :math:`\vec v`. Symbol: :code:`dot(u, v)` Latex: :math:`\left( \vec u, \vec v \right)` Dimension: :code:`any_dimension` .. py:data:: first_vector_length Length of :math:`\vec u`. Symbol: :code:`u` Latex: :math:`u` Dimension: :code:`any_dimension` .. py:data:: second_vector_length Length of :math:`\vec v`. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`any_dimension` .. py:data:: angle_between_vectors :attr:`~symplyphysics.symbols.basic.angle` between :math:`\vec u` and :math:`\vec v`. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: law :code:`dot(u, v) = u * v * cos(phi)` Latex: .. math:: \left( \vec u, \vec v \right) = u v \cos{\left(\varphi \right)}