Cross product is proportional to sine of angle between vectors ============================================================== The cross product of two vectors is a binary operation which produces a vector whose length is proportional to the lengths of the given vectors and the sine of the angle between them. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.geometry.cross_product_is_proportional_to_sine_between_vectors .. py:data:: cross_product_length Length of the cross product between :math:`\vec u` and :math:`\vec v`. Symbol: :code:`norm(cross(u, v))` Latex: :math:`\left \Vert \left[ \vec u, \vec v \right] \right \Vert` Dimension: :code:`any_dimension` .. py:data:: first_vector_length Length of :math:`\vec u`. Symbol: :code:`u` Latex: :math:`u` Dimension: :code:`any_dimension` .. py:data:: second_vector_length Length of :math:`\vec v`. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`dimensionless` .. py:data:: angle_between_vectors :attr:`~symplyphysics.symbols.basic.angle` between :math:`\vec u` and :math:`\vec v`. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: law :code:`norm(cross(u, v)) = u * v * sin(phi)` Latex: .. math:: \left \Vert \left[ \vec u, \vec v \right] \right \Vert = u v \sin{\left(\varphi \right)}