Magnetic field due to constant filamentary current ================================================== Known as the **Biot—Savart law**, it is an equation describing the magnetic field due to a constant electric current. **Notation:** #. :math:`\mu_0` (:code:`mu_0`) is :attr:`~symplyphysics.quantities.vacuum_permeability`. **Notes:** #. This version of the law deals with a current in an infinitely thin wire. For a conductor of a finite thickness, the following relation must be used: .. math:: I d \vec{\ell} = \vec{J} dV #. To find the total magnetic flux density, calculate the line integral over the whole contour. **Conditions:** #. The system is in a vacuum. **Links:** #. `Wikipedia — Biot—Savart law `__. .. py:currentmodule:: symplyphysics.laws.electricity.vector.magnetic_field_due_to_constant_filamentary_current .. py:data:: magnetic_flux_density_change Infinitesimal change of the :attr:`~symplyphysics.symbols.electrodynamics.magnetic_flux_density` at a given point in space. Symbol: :code:`dB` Latex: :math:`d \vec{B}` Dimension: :code:`magnetic_density` .. py:data:: absolute_permeability :attr:`~symplyphysics.symbols.electrodynamics.absolute_permeability` of the medium. Symbol: :code:`mu` Latex: :math:`\mu` Dimension: :code:`inductance/length` .. py:data:: current :attr:`~symplyphysics.symbols.electrodynamics.current` in the contour. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`current` .. py:data:: position_vector Position vector of the point at which the magnetic flux density is measured. Also see :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: contour_element_position_vector Position vector of a point on the integration path. Also see :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`l` Latex: :math:`\vec{\ell}` Dimension: :code:`length` .. py:data:: contour_element_displacement A vector along the integration path whose magnitude is the length of the differential element in the direction of conventional current. Also see :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance`. Symbol: :code:`dl` Latex: :math:`d \vec{\ell}` Dimension: :code:`length` .. py:data:: law :code:`dB = mu / (4 * pi) * I * cross(dl, r - l) / norm(r - l)^3` Latex: .. math:: d \vec{B} = \frac{\mu}{4 \pi} \frac{I \left[ d \vec{\ell}, {\vec r} - \vec{\ell} \right]}{\left \Vert {\vec r} - \vec{\ell} \right \Vert^{3}}