Lorentz force via electromagnetic field ======================================= The **Lorentz force law** states that a charged particle moving in an electromagnetic field experiences a force that depends on the values of the electric field and the magnetic field. **Notation:** #. :math:`\left[ \vec a, \vec b \right]` (:code:`cross(a, b)`) is the cross product between :math:`\vec a` and :math:`\vec b`. **Notes:** #. This law is valid even in the relativistic case. #. This law works only in principle because a real particle would generate its own electromagnetic field that would interact with the external one which would alter the electromagnetic force it experiences. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.electricity.vector.lorentz_force_via_electromagnetic_field .. py:data:: lorentz_force Vector of the Lorentz :attr:`~symplyphysics.symbols.classical_mechanics.force` exerted on the charged particle. Symbol: :code:`F` Latex: :math:`{\vec F}` Dimension: :code:`force` .. py:data:: charge Value of the electric :attr:`~symplyphysics.symbols.electrodynamics.charge` of the test particle. Symbol: :code:`q` Latex: :math:`q` Dimension: :code:`charge` .. py:data:: electric_field Vector of the electric field. See :attr:`~symplyphysics.symbols.electrodynamics.electric_field_strength`. Symbol: :code:`E` Latex: :math:`{\vec E}` Dimension: :code:`voltage/length` .. py:data:: velocity Vector of the particle's velocity. See :attr:`~symplyphysics.symbols.classical_mechanics.speed`. Symbol: :code:`v` Latex: :math:`{\vec v}` Dimension: :code:`velocity` .. py:data:: magnetic_flux_density Vector of the :attr:`~symplyphysics.symbols.electrodynamics.magnetic_flux_density`. Symbol: :code:`B` Latex: :math:`{\vec B}` Dimension: :code:`magnetic_density` .. py:data:: law :code:`F = q * (E + cross(v, B))` Latex: .. math:: {\vec F} = q \left({\vec E} + \left[ {\vec v}, {\vec B} \right]\right)