Lorentz force via electromagnetic field ======================================= The **Lorentz force law** states that a charged particle moving in an electromagnetic field experiences a force that depends on the values of the electric field and the magnetic field. **Notation:** #. :math:`\vec a \times \vec b` (:code:`cross(a, b)`) is the cross product between :math:`\vec a` and :math:`\vec b`. #. :math:`\lVert \vec a \rVert` (:code:`norm(a)`) is the Euclidean norm of :math:`\vec a`. #. :math:`|x|` (:code:`abs(x)`) is the absolute value of :math:`x`. **Notes:** #. This law is valid even in the relativistic case. #. This law works only in principle because a real particle would generate its own electromagnetic field that would interact with the external one which would alter the electromagnetic force it experiences. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.electricity.vector.lorentz_force_via_electromagnetic_field .. py:data:: charge Value of the electric :attr:`~symplyphysics.symbols.electrodynamics.charge` of the test particle. Symbol: :code:`q` Latex: :math:`q` Dimension: :code:`charge` .. py:function:: lorentz_force_law(electric_field_, magnetic_flux_density_, velocity_) Lorentz force via electric and magnetic fields, and velocity. Law: :code:`F = q * (E + cross(v, B))` Latex: .. math:: \vec F = q \left( \vec E + \vec v \times \vec B \right) :param electric\_field\_: vector of electric field Symbol: :code:`E` Latex: :math:`\vec E` Dimension: *voltage* / *length* :param magnetic\_flux\_density\_: pseudovector of magnetic flux density Symbol: :code:`B` Latex: :math:`\vec B` Dimension: *magnetic density* :param velocity\_: vector of particle's velocity Symbol: :code:`v` Latex: :math:`\vec v` Dimension: *velocity* :return: Lorentz force acting on the charged particle Symbol: :code:`F` Latex: :math:`\vec F` Dimension: *force* .. py:function:: electric_field_law(lorentz_force_, magnetic_flux_density_, velocity_) Electric field via Lorentz force, magnetic field, and velocity. Law: :code:`E = F / q - cross(v, B)` Latex: .. math:: \vec E = \frac{\vec F}{q} - \vec v \times \vec B :param lorentz\_force\_: Lorentz force acting on the charged particle Symbol: :code:`F` Latex: :math:`\vec F` Dimension: *force* :param magnetic\_flux\_density\_: pseudovector of magnetic flux density Symbol: :code:`B` Latex: :math:`\vec B` Dimension: *magnetic density* :param velocity\_: vector of particle's velocity Symbol: :code:`v` Latex: :math:`\vec v` Dimension: *velocity* :return: vector of electric field Symbol: :code:`E` Latex: :math:`\vec E` Dimension: *voltage* / *length* .. py:function:: charge_law(lorentz_force_, electric_field_, magnetic_flux_density_, velocity_) Magnitude of the particle's charge via force and electromagnetic field. Law: :code:`abs(q) = norm(F) / norm(E + cross(v, B))` Latex: .. math:: |q| = \frac{\lVert \vec F \rVert}{\left \lVert \vec E + \vec v \times \vec B \right \rVert} :param lorentz\_force\_: Lorentz force acting on the charged particle Symbol: :code:`F` Latex: :math:`\vec F` Dimension: *force* :param electric\_field\_: vector of electric field Symbol: :code:`E` Latex: :math:`\vec E` Dimension: *voltage* / *length* :param magnetic\_flux\_density\_: pseudovector of magnetic flux density Symbol: :code:`B` Latex: :math:`\vec B` Dimension: *magnetic density* :param velocity\_: vector of particle's velocity Symbol: :code:`v` Latex: :math:`\vec v` Dimension: *velocity* :return: magnitude of the test charge Symbol: :code:`q` Dimension: *charge*