Force acting on dipole in non-uniform electric field ==================================================== If an electric dipole is positioned in a spatially non-uniform electric field, the forces acting on the point charges that compose the dipole no longer cancel each other and the dipole experiences an overall non-zero acceleration. **Notes:** #. A more general representation of this law, which does not require choosing an axis aligned with the dipole, assuming Cartesian coordinates: .. math:: \vec F = \left( \vec p, \nabla \right) \vec E = p_x \frac{\partial \vec E}{\partial x} + p_y \frac{\partial \vec E}{\partial y} + p_z \frac{\partial \vec E}{\partial z} **Links:** #. `Physics Bootcamp `__. .. py:currentmodule:: symplyphysics.laws.electricity.vector.force_acting_on_dipole_in_non_uniform_electric_field .. py:data:: force :attr:`~symplyphysics.symbols.classical_mechanics.force` acting on the dipole. Symbol: :code:`F` Latex: :math:`{\vec F}` Dimension: :code:`force` .. py:data:: electric_dipole_moment Magnitude of the :attr:`~symplyphysics.symbols.electrodynamics.electric_dipole_moment` vector. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`charge*length` .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position` along the axis whose direction is aligned with that of the :attr:`~electric_dipole_moment` vector. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: electric_field Vector of the electric field as a function of :attr:`~position`. See :attr:`~symplyphysics.symbols.electrodynamics.electric_field_strength`. Symbol: :code:`E(x)` Latex: :math:`{\vec E} \left( x \right)` Dimension: :code:`voltage/length` .. py:data:: law :code:`F = p * Derivative(E(x), x)` Latex: .. math:: {\vec F} = p \frac{d}{d x} {\vec E} \left( x \right)