Electrostatic force between two charges ======================================= Also known as **Coulomb's law**, it is an experimental law that calculates the amount of force between two electrically charged particles at rest. Also see the :ref:`scalar law `. **Notes:** #. If a given charge is in the vicinity of a system of point charges, then the net law can be found via the :ref:`principle of superposition `. **Notation:** #. :math:`\varepsilon_0` (:code:`epsilon_0`) is :attr:`~symplyphysics.quantities.vacuum_permittivity`. **Conditions:** #. The charges are small. #. The charges are at rest. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.electricity.vector.electrostatic_force_between_two_charges .. py:data:: force Vector of the electrostatic :attr:`~symplyphysics.symbols.classical_mechanics.force` experienced by the :attr:`~first_charge` in the vicinity of the :attr:`~second_charge` in vacuum. Symbol: :code:`F_12` Latex: :math:`{\vec F}_{12}` Dimension: :code:`force` .. py:data:: first_charge Value of the first point :attr:`~symplyphysics.symbols.electrodynamics.charge`. Symbol: :code:`q_1` Latex: :math:`q_{1}` Dimension: :code:`charge` .. py:data:: second_charge Value of the second point :attr:`~symplyphysics.symbols.electrodynamics.charge`. Symbol: :code:`q_2` Latex: :math:`q_{2}` Dimension: :code:`charge` .. py:data:: position_vector Position vector drawn from the :attr:`~second_charge` to the :attr:`~first_charge`. Symbol: :code:`d_21` Latex: :math:`{\vec d}_{21}` Dimension: :code:`length` .. py:data:: force_law :code:`F_12 = q_1 * q_2 / (4 * pi * epsilon_0) * d_21 / norm(d_21)^3` Latex: .. math:: {\vec F}_{12} = \frac{q_{1} q_{2}}{4 \pi \varepsilon_0} \frac{{\vec d}_{21}}{\left \Vert {\vec d}_{21} \right \Vert^{3}} .. py:data:: position_vector_law :code:`d_21 = sign(q_1 * q_2) * sqrt(Abs(q_1 * q_2) / (4 * pi * epsilon_0)) * F_12 / norm(F_12)^(3/2)` Latex: .. math:: {\vec d}_{21} = \operatorname{sign}{\left(q_{1} q_{2} \right)} \sqrt{\frac{\left|{q_{1} q_{2}}\right|}{4 \pi \varepsilon_0}} \frac{{\vec F}_{12}}{\left \Vert {\vec F}_{12} \right \Vert^{\frac{3}{2}}}