Electric dipole moment of electrically neutral system ===================================================== The electric dipole moment of an electrically neutral system of (point) charges can be found as the sum of the products of the values and the position vectors of the charges that compose the system. **Notes:** #. The value of the electric dipole moment for such a system is independent of the choice of the origin of the coordinate frame (i.e. it is translationally invariant). **Conditions:** #. The system is electrically neutral. **Links:** #. `Wikipedia, derivable from the third equation `__. .. py:currentmodule:: symplyphysics.laws.electricity.vector.electric_dipole_moment_of_electrically_neutral_system .. py:data:: electric_dipole_moment Vector of the :attr:`~symplyphysics.symbols.electrodynamics.electric_dipole_moment` of the system of charges. Symbol: :code:`p` Latex: :math:`{\vec p}` Dimension: :code:`charge*length` .. py:data:: charge Value of the :math:`i`-th point charge. Symbol: :code:`q[i]` Latex: :math:`{q}_{i}` Dimension: :code:`charge` .. py:data:: position_vector Position vector of the :math:`i`-th point charge. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r[i]` Latex: :math:`{{\vec r}}_{i}` Dimension: :code:`length` .. py:data:: law :code:`p = Sum(q[i] * r[i], i)` Latex: .. math:: {\vec p} = \sum_i {q}_{i} {{\vec r}}_{i} .. py:data:: electric_neutrality_condition :code:`Sum(q[i], i) = 0` Latex: .. math:: \sum_i {q}_{i} = 0