Self-induced electromotive force via time derivative of current =============================================================== Expression for the self-induced emf can be derived from the Faraday's law featuring the time derivative of current flowing through the circuit. **Links:** #. `Wikipedia, formula in box `__. .. py:currentmodule:: symplyphysics.laws.electricity.self_induced_electromotive_force_via_time_derivative_of_current .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: electromotive_force Self-induced :attr:`~symplyphysics.symbols.electrodynamics.electromotive_force` as a function of :attr:`~time`. Symbol: :code:`E(t)` Latex: :math:`\mathcal{E}{\left(t \right)}` Dimension: :code:`voltage` .. py:data:: inductance :attr:`~symplyphysics.symbols.electrodynamics.inductance` of the circuit. Symbol: :code:`L` Latex: :math:`L` Dimension: :code:`inductance` .. py:data:: current :attr:`~symplyphysics.symbols.electrodynamics.current` in the circuit as a function of :attr:`~time`. Symbol: :code:`I(t)` Latex: :math:`I{\left(t \right)}` Dimension: :code:`current` .. py:data:: law :code:`E(t) = -L * Derivative(I(t), t)` Latex: .. math:: \mathcal{E}{\left(t \right)} = - L \frac{d}{d t} I{\left(t \right)}