Radius of curvature of charged particle in magnetic field ========================================================= When a charged particle enters a magnetic field, it experiences an :doc:`electromagnetic force ` upon itself. In the absence of the electric field, the particle starts moving in a circular orbit. The radius of curvature of the particle's orbit is determined by the mass, speed, and charge of the particle as well as by the magnetic flux density. **Conditions:** #. The particle's speed and the magnetic field are perpendicular to each other. #. The magnetic field is uniform. #. The electric field is zero. **Links:** #. `Physics LibreTexts, formula 11.4.2 `__. .. py:currentmodule:: symplyphysics.laws.electricity.radius_of_curvature_of_charged_particle_in_magnetic_field .. py:data:: radius_of_curvature :attr:`~symplyphysics.symbols.basic.radius_of_curvature` of the particle's orbit. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: mass :attr:`~symplyphysics.symbols.basic.mass` of the particle. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: speed :attr:`~symplyphysics.symbols.classical_mechanics.speed` of the particle. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: charge :attr:`~symplyphysics.symbols.electrodynamics.charge` of the particle. Symbol: :code:`q` Latex: :math:`q` Dimension: :code:`charge` .. py:data:: magnetic_flux_density Magnitude of :attr:`~symplyphysics.symbols.electrodynamics.magnetic_flux_density`. Symbol: :code:`B` Latex: :math:`B` Dimension: :code:`magnetic_density` .. py:data:: law :code:`r = m * v / (q * B)` Latex: .. math:: r = \frac{m v}{q B}