Instantaneous energy of electric field ====================================== There is an oscillatory circuit with alternating current. Then the energy of the electric field will depend on the inductance, the maximum value of the current, the angular frequency of the current, the time and the initial phase. .. py:currentmodule:: symplyphysics.laws.electricity.instantaneous_energy_of_electric_field .. py:data:: energy :attr:`~symplyphysics.symbols.basic.energy` stored in the coil. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: inductance :attr:`~symplyphysics.symbols.electrodynamics.inductance` of the coil. Symbol: :code:`L` Latex: :math:`L` Dimension: :code:`inductance` .. py:data:: current_amplitude :attr:`~symplyphysics.symbols.electrodynamics.current` amplitude. Symbol: :code:`I_max` Latex: :math:`I_\text{max}` Dimension: :code:`current` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the current. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: initial_phase Initial :attr:`~symplyphysics.symbols.classical_mechanics.phase_shift` of the oscillations. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: law :code:`E = L * I_max^2 / 2 * cos(w * t + phi)^2` Latex: .. math:: E = \frac{L I_\text{max}^{2}}{2} \cos^{2}{\left(\omega t + \varphi \right)}