Surge impedance of microstrip line when effective width is less than substrate thickness ======================================================================================== The microstrip line is a dielectric substrate on which a metal strip is applied. When a wave propagates along a microstrip line, part of the field goes out, since the microstrip line does not have metal borders on all sides, unlike, for example, rectangular waveguides. **Conditions:** #. Effective width :math:`w_\text{eff}` of the microstrip line should be less than or equal to thickness :math:`h` of the substrate. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.wave_resistance_of_microstrip_line_for_effective_width_less_thickness .. py:data:: surge_impedance :attr:`~symplyphysics.symbols.electrodynamics.surge_impedance` of the microstrip line. Symbol: :code:`Z_S` Latex: :math:`Z_\text{S}` Dimension: :code:`impedance` .. py:data:: effective_permittivity Effective :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the microstrip line. See :ref:`Effective permittivity of microstrip line `. Symbol: :code:`epsilon_eff` Latex: :math:`\varepsilon_\text{eff}` Dimension: :code:`dimensionless` .. py:data:: substrate_thickness :attr:`~symplyphysics.symbols.classical_mechanics.thickness` of the substrate. Symbol: :code:`h` Latex: :math:`h` Dimension: :code:`length` .. py:data:: effective_width Effective width (see :attr:`~symplyphysics.symbols.classical_mechanics.length`) of the microstrip line. See :ref:`Effective width of microstrip line `. Symbol: :code:`w_eff` Latex: :math:`w_\text{eff}` Dimension: :code:`length` .. py:data:: law :code:`Z_S = Z_0 / sqrt(epsilon_eff) * log(8 * h / w_eff + w_eff / (4 * h))` Latex: .. math:: Z_\text{S} = \frac{Z_0}{\sqrt{\varepsilon_\text{eff}}} \log \left( \frac{8 h}{w_\text{eff}} + \frac{w_\text{eff}}{4 h} \right)