Short circuit inductance of microstrip line =========================================== To create a short circuit based on a microstrip line, a metallized hole can be made in the line. Such an opening will have a certain inductance, which can be calculated. **Notation:** #. :math:`\mu_0` (:code:`mu_0`) is :attr:`~symplyphysics.quantities.vacuum_permeability`. .. TODO: add link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.transmission_lines.microstrip_lines.short_circuit_inductance_of_microstrip_line .. py:data:: inductance :attr:`~symplyphysics.symbols.electrodynamics.inductance` of a metallized hole in a microstrip line. Symbol: :code:`L` Latex: :math:`L` Dimension: :code:`inductance` .. py:data:: substrate_thickness :attr:`~symplyphysics.symbols.classical_mechanics.thickness` of the substrate of the microstrip line. Symbol: :code:`h` Latex: :math:`h` Dimension: :code:`length` .. py:data:: radius :attr:`~symplyphysics.symbols.classical_mechanics.radius` of the metallized hole. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: law :code:`L = mu_0 / (2 * pi) * (h * log((h + sqrt(r^2 + h^2)) / r) + 1.5 * (r - sqrt(r^2 + h^2)))` Latex: .. math:: L = \frac{\mu_0}{2 \pi} \left(h \log \left( \frac{h + \sqrt{r^{2} + h^{2}}}{r} \right) + 1.5 \left(r - \sqrt{r^{2} + h^{2}}\right)\right) .. TODO: check if `1.5` isn't really `3/2`