Resonant frequency of ring resonator ==================================== The ring resonator is a microstrip line in the shape of a circle. When a wave propagates along a microstrip line, part of the field goes out, since the microstrip line does not have metal borders on all sides, unlike, for example, rectangular waveguides. A wave traveling through an ring resonator acquires a phase shift and interacts with a wave incident on the resonator. If the phase shift is expressed as :math:`2 \pi N`, then these waves add up in phase; here :math:`N` is the interference order. **Notation:** #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.resonators.resonant_frequency_of_ring_resonator .. py:data:: frequency :attr:`~symplyphysics.symbols.classical_mechanics.temporal_frequency` of the ring resonator. Symbol: :code:`f` Latex: :math:`f` Dimension: :code:`frequency` .. py:data:: length :attr:`~symplyphysics.symbols.classical_mechanics.length` of the circumference of the ring resonator. Symbol: :code:`l` Latex: :math:`l` Dimension: :code:`length` .. py:data:: interference_order Interference order, see :attr:`~symplyphysics.symbols.basic.positive_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: relative_permittivity Effective :attr:`~symplyphysics.symbols.electrodynamics.relative_permittivity` of the resonator. Symbol: :code:`epsilon_r` Latex: :math:`\varepsilon_\text{r}` Dimension: :code:`dimensionless` .. py:data:: law :code:`f = N * c / (l * sqrt(epsilon_r))` Latex: .. math:: f = \frac{N c}{l \sqrt{\varepsilon_\text{r}}}