Quality factor of loaded resonator from circuit parameters ========================================================== If the resonator is an oscillatory circuit to which an external circuit is connected, then the loaded Q-factor of the resonator depends on the resistances of the resonator and the external circuit, as well as on the inductance of the resonator and the angular oscillation frequency. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.resonators.loaded_resonator_quality_factor_from_circuit_parameters .. py:data:: loaded_quality_factor :attr:`~symplyphysics.symbols.classical_mechanics.quality_factor` of the loaded resonator. Symbol: :code:`Q_1` Latex: :math:`Q_{1}` Dimension: :code:`dimensionless` .. py:data:: resistance :attr:`~symplyphysics.symbols.electrodynamics.electrical_resistance` of the oscillating circuit. Symbol: :code:`R_0` Latex: :math:`R_{0}` Dimension: :code:`impedance` .. py:data:: inductance :attr:`~symplyphysics.symbols.electrodynamics.inductance` of the oscillating circuit. Symbol: :code:`L` Latex: :math:`L` Dimension: :code:`inductance` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the current. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: load_resistance :attr:`~symplyphysics.symbols.electrodynamics.electrical_resistance` of the load. Symbol: :code:`R_L` Latex: :math:`R_\text{L}` Dimension: :code:`impedance` .. py:data:: law :code:`Q_1 = R_L * R_0 / (w * L * (R_L + R_0))` Latex: .. math:: Q_{1} = \frac{R_\text{L} R_{0}}{\omega L \left(R_\text{L} + R_{0}\right)}