Instantaneous energy of resonator ================================= A rectangular resonator consists of metal walls and a material filling it. The resonator is capable of storing energy. The instantaneous value of the resonator energy depends on its quality factor, initial energy value, time and angular frequency. .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.resonators.instantaneous_value_of_resonator_energy .. py:data:: instantaneous_energy Instantaneous :attr:`~symplyphysics.symbols.basic.energy` of the resonator. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: initial_energy Initial :attr:`~symplyphysics.symbols.basic.energy` of the resonator. Symbol: :code:`E_0` Latex: :math:`E_{0}` Dimension: :code:`energy` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time` at which :attr:`~instantaneous_energy` is measured. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: angular_frequency :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the current. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: quality_factor :attr:`~symplyphysics.symbols.classical_mechanics.quality_factor` of the resonator. Symbol: :code:`Q` Latex: :math:`Q` Dimension: :code:`dimensionless` .. py:data:: law :code:`E = E_0 * exp(-w * t / Q)` Latex: .. math:: E = E_{0} \exp{\left(- \frac{\omega t}{Q} \right)}