Impedance module of serial resistor-coil-capacitor circuit ========================================================== Consider an electrical circuit consisting of a capacitor, coil, and resistor connected in series. Then you can find the impedance module of such a circuit. **Links:** #. `Wikipedia, derivable from first formula `__. .. py:currentmodule:: symplyphysics.laws.electricity.circuits.impedance_module_of_the_serial_resistor_coil_capacitor_circuit .. py:data:: circuit_impedance_module Absolute value of the circuit's :attr:`~symplyphysics.symbols.electrodynamics.electrical_impedance`. Symbol: :code:`abs(Z)` Latex: :math:`|Z|` Dimension: :code:`impedance` .. py:data:: resistor_resistance :attr:`~symplyphysics.symbols.electrodynamics.electrical_resistance` of the resistor. Symbol: :code:`R` Latex: :math:`R` Dimension: :code:`impedance` .. py:data:: capacitor_reactance :attr:`~symplyphysics.symbols.electrodynamics.electrical_reactance` of the capacitor. Symbol: :code:`X_C` Latex: :math:`X_\text{C}` Dimension: :code:`impedance` .. py:data:: coil_reactance :attr:`~symplyphysics.symbols.electrodynamics.electrical_reactance` of the coil. Symbol: :code:`X_L` Latex: :math:`X_\text{L}` Dimension: :code:`impedance` .. py:data:: law :code:`abs(Z) = sqrt(R^2 + (X_L - X_C)^2)` Latex: .. math:: |Z| = \sqrt{R^{2} + \left(X_\text{L} - X_\text{C}\right)^{2}}