Wave impedance of Lange coupler =============================== The Lange coupler is based on microstrip transmission lines. When this coupler is in operation, both even and odd modes are distributed. Knowing the wave impedance for even and odd modes, it is possible to calculate the equivalent wave impedance of the coupler. .. image:: https://habrastorage.org/r/w1560/getpro/habr/upload_files/054/d02/c8d/054d02c8d91c06425ae079d34b18ce15.jpeg :width: 400px :align: center .. TODO: find link TODO: rename file .. py:currentmodule:: symplyphysics.laws.electricity.circuits.couplers.wave_resistance_of_lange_coupler .. py:data:: wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the Lange coupler. Symbol: :code:`eta` Latex: :math:`\eta` Dimension: :code:`impedance` .. py:data:: odd_mode_wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the odd mode. Symbol: :code:`eta_o` Latex: :math:`\eta_\text{o}` Dimension: :code:`impedance` .. py:data:: even_mode_wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the even mode. Symbol: :code:`eta_e` Latex: :math:`\eta_\text{e}` Dimension: :code:`impedance` .. py:data:: segment_count Number of the segments of the Lange coupler. See :attr:`~symplyphysics.symbols.basic.positive_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: law :code:`eta = sqrt(eta_o * eta_e * (eta_o + eta_e)^2 / ((eta_o + eta_e * (N - 1)) * (eta_e + eta_o * (N - 1))))` Latex: .. math:: \eta = \sqrt{\frac{\eta_\text{o} \eta_\text{e} \left(\eta_\text{o} + \eta_\text{e}\right)^{2}}{\left(\eta_\text{o} + \eta_\text{e} \left(N - 1\right)\right) \left(\eta_\text{e} + \eta_\text{o} \left(N - 1\right)\right)}}