Wave impedance of odd mode of Lange coupler =========================================== The Lange coupler is based on microstrip transmission lines. When this coupler is in operation, both even and odd modes are distributed. Knowing the coupling coefficient between the coupler segments, the surge impedance of the transmission line to which the coupler is connected, as well as the number of coupler segments, it is possible to calculate the wave impedance for an odd mode. .. image:: https://habrastorage.org/r/w1560/getpro/habr/upload_files/054/d02/c8d/054d02c8d91c06425ae079d34b18ce15.jpeg :width: 400px :align: center .. TODO: find link TODO: rename file to mention wave *impedance* .. py:currentmodule:: symplyphysics.laws.electricity.circuits.couplers.wave_resistance_odd_mode_of_lange_coupler .. py:data:: odd_mode_wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the odd mode. Symbol: :code:`eta_o` Latex: :math:`\eta_\text{o}` Dimension: :code:`impedance` .. py:data:: coupling_factor Coupling factor between coupler segments. Symbol: :code:`C` Latex: :math:`C` Dimension: :code:`dimensionless` .. py:data:: surge_impedance :attr:`~symplyphysics.symbols.electrodynamics.surge_impedance` of the transmission line. Symbol: :code:`Z_S` Latex: :math:`Z_\text{S}` Dimension: :code:`impedance` .. py:data:: segment_count Number of segments in Lange coupler. See :attr:`~symplyphysics.symbols.basic.positive_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: law :code:`eta_o = Z_S * sqrt((1 - C) / (1 + C)) * (N - 1) * (1 + sqrt(C^2 + (1 - C^2) * (N - 1)^2)) / (C + sqrt(C^2 + (1 - C^2) * (N - 1)^2) + (N - 1) * (1 - C))` Latex: .. math:: \eta_\text{o} = Z_\text{S} \sqrt{\frac{1 - C}{1 + C}} \frac{\left(N - 1\right) \left(1 + \sqrt{C^{2} + \left(1 - C^{2}\right) \left(N - 1\right)^{2}}\right)}{C + \sqrt{C^{2} + \left(1 - C^{2}\right) \left(N - 1\right)^{2}} + \left(N - 1\right) \left(1 - C\right)}