Wave impedance of even mode of Lange coupler ============================================ The Lange coupler is based on microstrip transmission lines. When this coupler is in operation, both even and odd modes are distributed. Knowing the coupling coefficient between the coupler segments, the wave impedance of the odd mode, as well as the number of coupler segments, it is possible to calculate the wave impedance for an even mode. .. image:: https://habrastorage.org/r/w1560/getpro/habr/upload_files/054/d02/c8d/054d02c8d91c06425ae079d34b18ce15.jpeg :width: 400px :align: center .. TODO: find link TODO: rename file to mention wave *impedance* .. py:currentmodule:: symplyphysics.laws.electricity.circuits.couplers.wave_resistance_even_mode_of_lange_coupler .. py:data:: even_mode_wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the even mode. Symbol: :code:`eta_e` Latex: :math:`\eta_\text{e}` Dimension: :code:`impedance` .. py:data:: odd_mode_wave_impedance :attr:`~symplyphysics.symbols.electrodynamics.wave_impedance` of the odd mode. Symbol: :code:`eta_o` Latex: :math:`\eta_\text{o}` Dimension: :code:`impedance` .. py:data:: coupling_factor Coupling factor between coupler segments. Symbol: :code:`C` Latex: :math:`C` Dimension: :code:`dimensionless` .. py:data:: segment_count Number of segments in Lange coupler. See :attr:`~symplyphysics.symbols.basic.positive_number`. Symbol: :code:`N` Latex: :math:`N` Dimension: :code:`dimensionless` .. py:data:: law :code:`eta_e = eta_o * (C + sqrt(C^2 + (1 - C^2) * (N - 1)^2)) / ((N - 1) * (1 - C))` Latex: .. math:: \eta_\text{e} = \frac{\eta_\text{o} \left(C + \sqrt{C^{2} + \left(1 - C^{2}\right) \left(N - 1\right)^{2}}\right)}{\left(N - 1\right) \left(1 - C\right)}