Impedance of Wilkinson microstrip divider ========================================= The Wilkinson divider is a device designed to divide the power of a microwave signal into two output ports. Different sections of the divider consist of a microstrip line of different widths. There are four such sections in total and each has its own impedance. .. image:: https://habrastorage.org/getpro/habr/upload_files/c24/031/52e/c2403152e2b320ab1c4c44f970dee1f2.gif :width: 400px :align: center .. TODO: find link .. py:currentmodule:: symplyphysics.laws.electricity.circuits.couplers.impedances_for_wilkinson_microstrip_divider .. py:data:: first_impedance :attr:`~symplyphysics.symbols.electrodynamics.electrical_impedance` of the first section. Symbol: :code:`Z_1` Latex: :math:`Z_{1}` Dimension: :code:`impedance` .. py:data:: second_impedance :attr:`~symplyphysics.symbols.electrodynamics.electrical_impedance` of the second section. Symbol: :code:`Z_2` Latex: :math:`Z_{2}` Dimension: :code:`impedance` .. py:data:: third_impedance :attr:`~symplyphysics.symbols.electrodynamics.electrical_impedance` of the third section. Symbol: :code:`Z_3` Latex: :math:`Z_{3}` Dimension: :code:`impedance` .. py:data:: fourth_impedance :attr:`~symplyphysics.symbols.electrodynamics.electrical_impedance` of the fourth section. Symbol: :code:`Z_4` Latex: :math:`Z_{4}` Dimension: :code:`impedance` .. py:data:: transmission_line_impedance :attr:`~symplyphysics.symbols.electrodynamics.electrical_impedance` of the transmission line to which the divider is connected. Symbol: :code:`Z_0` Latex: :math:`Z_{0}` Dimension: :code:`impedance` .. py:data:: power_ratio Ratio of the :attr:`~symplyphysics.symbols.basic.power` at the outputs of the divider. Symbol: :code:`k` Latex: :math:`k` Dimension: :code:`dimensionless` .. py:data:: law :code:`[Z_1, Z_2, Z_3, Z_4] = [Z_0 * sqrt(k * (1 + k^2)), Z_0 * sqrt((1 + k^2) / k^3), Z_0 * sqrt(k), Z_0 / sqrt(k)]` Latex: .. math:: \begin{pmatrix} Z_{1} \\ Z_{2} \\ Z_{3} \\ Z_{4} \end{pmatrix} = \begin{pmatrix} Z_{0} \sqrt{k \left(1 + k^{2}\right)} \\ Z_{0} \sqrt{\frac{1 + k^{2}}{k^{3}}} \\ Z_{0} \sqrt{k} \\ \frac{Z_{0}}{\sqrt{k}} \end{pmatrix}