Work is integral of force over distance ======================================= Assuming a one-dimensional environment, when the force F on a particle-like object depends on the position of the object, the work done by F on the object while the object moves from one position to another is to be found by integrating the force along the path of the object. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.dynamics.work_is_integral_of_force_over_distance .. py:data:: work The :attr:`~symplyphysics.symbols.basic.work` done by :attr:`~force`. Symbol: :code:`W` Latex: :math:`W` Dimension: :code:`energy` .. py:data:: position The :attr:`~symplyphysics.symbols.classical_mechanics.position` of the object. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: force The :attr:`~symplyphysics.symbols.classical_mechanics.force` exerted on the object as a function of :attr:`~position`. Symbol: :code:`F(x)` Latex: :math:`F{\left(x \right)}` Dimension: :code:`force` .. py:data:: position_before The initial :attr:`~symplyphysics.symbols.classical_mechanics.position` of the object. Symbol: :code:`x_0` Latex: :math:`x_{0}` Dimension: :code:`length` .. py:data:: position_after The end :attr:`~symplyphysics.symbols.classical_mechanics.position` of the object. Symbol: :code:`x_1` Latex: :math:`x_{1}` Dimension: :code:`length` .. py:data:: law :code:`W = Integral(F(x), (x, x_0, x_1))` Latex: .. math:: W = \int\limits_{x_{0}}^{x_{1}} F{\left(x \right)}\, dx