Force is derivative of momentum (vector) ======================================== Newton's second law of motion can be generalized in terms of linear momentum. Precisely, the net force exerted on a body is equal to the time derivative of the body's momentum. **Notes:** #. Works in relativistic mechanics as well as in classical mechanics. #. See :ref:`scalar counterpart ` of this law. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.dynamics.vector.force_is_derivative_of_momentum .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: momentum The magnitude of the :attr:`~symplyphysics.symbols.classical_mechanics.momentum` of the body as a function of :attr:`~time`. Symbol: :code:`p(t)` Latex: :math:`\mathbf{p} \left( t \right)` Dimension: :code:`momentum` .. py:data:: force The magnitude of the net :attr:`~symplyphysics.symbols.classical_mechanics.force` exerted on the body as a function of :attr:`~time`. Symbol: :code:`F(t)` Latex: :math:`\mathbf{F} \left( t \right)` Dimension: :code:`force` .. py:data:: force_law :code:`F(t) = Derivative(p(t), t)` Latex: .. math:: \mathbf{F} \left( t \right) = \frac{d}{d t} \mathbf{p} \left( t \right)