Period of torsion pendulum from rotational inertia ================================================== A torsion pendulum is an angular version of a linear harmonic oscillator: a disk oscillates in a horizontal plane; the reference line oscillates with some angular amplitude. The element of elasticity is associated with the twisting of the suspension wire. **Links:** #. `Wikipedia, third formula `__. .. py:currentmodule:: symplyphysics.laws.dynamics.period_of_torsion_pendulum_from_rotational_inertia .. py:data:: period The :attr:`~symplyphysics.symbols.basic.period` of pendulum's oscillations. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`time` .. py:data:: rotational_inertia The :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` of the disk. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: torsion_stiffness The :attr:`~symplyphysics.symbols.classical_mechanics.torsion_stiffness`, which depends on the properties of the suspension wire. Symbol: :code:`kappa` Latex: :math:`\kappa` Dimension: :code:`force*length/angle` .. py:data:: law :code:`T = 2 * pi * sqrt(I / kappa)` Latex: .. math:: T = 2 \pi \sqrt{\frac{I}{\kappa}}