Period of physical pendulum =========================== A *physical pendulum* is a pendulum with an arbitrary distribution of mass that oscillates about a given pivot point. The period of its oscillations depends on its rotational inertia, mass and the distance between the pivot and the center of mass of the pendulum. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.dynamics.period_of_physical_pendulum .. py:data:: period The :attr:`~symplyphysics.symbols.basic.period` of the physical pendulum. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`time` .. py:data:: mass The :attr:`~symplyphysics.symbols.basic.mass` of the pendulum. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: rotational_inertia The :attr:`~symplyphysics.symbols.classical_mechanics.rotational_inertia` of the pendulum. Symbol: :code:`I` Latex: :math:`I` Dimension: :code:`length**2*mass` .. py:data:: distance_to_pivot The :attr:`~symplyphysics.symbols.classical_mechanics.euclidean_distance` between the pivot and the pendulum's center of mass. Symbol: :code:`d` Latex: :math:`d` Dimension: :code:`length` .. py:data:: law :code:`T = 2 * pi * sqrt(I / (m * g * d))` Latex: .. math:: T = 2 \pi \sqrt{\frac{I}{m g d}}