Forced oscillations equation ============================ *Forced, or driven, oscillations* are a type of oscillations in the presence of an external driving force acting on the oscillating system. In the case of an oscillating external force, two angular frequencies are associated with such a system: #. the *natural angular frequency* of the system, which is the angular frequency the system would oscillate with if no external force were present, #. the angular frequency of the external force driving the oscillations. Such systems can undergo resonance if the angular frequency of the driving force is close to the natural angular frequency of the oscillator. **Links:** #. `Physics LibreTexts, formula (15.7.1) `__. .. py:currentmodule:: symplyphysics.laws.dynamics.forced_oscillations_equation .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: displacement The displacement of the oscillating body from rest value as a function of :attr:`~time`. See :attr:`~symplyphysics.symbols.classical_mechanics.position`. Symbol: :code:`x(t)` Latex: :math:`x{\left(t \right)}` Dimension: :code:`length` .. py:data:: mass The :attr:`~symplyphysics.symbols.basic.mass` of the oscillating body. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: natural_angular_frequency The natural :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the oscillator. Symbol: :code:`w_0` Latex: :math:`\omega_{0}` Dimension: :code:`angle/time` .. py:data:: driving_force_amplitude The amplitude of the driving :attr:`~symplyphysics.symbols.classical_mechanics.force`. Symbol: :code:`F` Latex: :math:`F` Dimension: :code:`force` .. py:data:: driving_angular_frequency The :attr:`~symplyphysics.symbols.classical_mechanics.angular_frequency` of the driving force. Symbol: :code:`w` Latex: :math:`\omega` Dimension: :code:`angle/time` .. py:data:: driving_phase_lag The :attr:`~symplyphysics.symbols.classical_mechanics.phase_shift` of the driving force. Symbol: :code:`phi` Latex: :math:`\varphi` Dimension: :code:`angle` .. py:data:: law :code:`Derivative(x(t), (t, 2)) + w_0^2 * x(t) = F / m * cos(w * t + phi)` Latex: .. math:: \frac{d^{2}}{d t^{2}} x{\left(t \right)} + \omega_{0}^{2} x{\left(t \right)} = \frac{F}{m} \cos{\left(\omega t + \varphi \right)}