Conservative force is gradient of potential energy ================================================== A conservative force is a such a force, the total work of which in moving a particle between two points is independent of the path taken. Alternative definition states that if a particle travels in a closed loop, the total work done by a conservative force is zero. **Conditions:** #. Force is conservative. Mathematically, this can be expressed as :math:`\text{curl} \, {\vec F} \! \left( \vec r \right) \equiv 0`, i.e. the force field must be irrotational. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.dynamics.fields.conservative_force_is_gradient_of_potential_energy .. py:data:: position_vector Position vector of a point in space. See :attr:`~symplyphysics.symbols.classical_mechanics.distance_to_origin`. Symbol: :code:`r` Latex: :math:`{\vec r}` Dimension: :code:`length` .. py:data:: force Vector field of the conservative force as a function of the :attr`position_vector`. See :attr:`~symplyphysics.symbols.classical_mechanics.force`. Symbol: :code:`F(r)` Latex: :math:`{\vec F} \left( {\vec r} \right)` Dimension: :code:`force` .. py:data:: potential_energy Scalar field of the force's potential as a function of the :attr`position_vector`. See :attr:`~symplyphysics.symbols.classical_mechanics.potential_energy`. Symbol: :code:`U(r)` Latex: :math:`U{\left({\vec r} \right)}` Dimension: :code:`energy` .. py:data:: law :code:`F(r) = -grad(U(r))` Latex: .. math:: {\vec F} \left( {\vec r} \right) = - \text{grad} \, U{\left({\vec r} \right)}