Elastic energy density of compression via strain ================================================ Volumetric density of the elastic energy of a body is proportional to its Young's modulus and the square of its strain. The :doc:`Hooke's law ` can be used to obtain analogous forms of this law. **Conditions:** #. The material is linearly elastic. **Links:** #. `Wikipedia, equation on the fourth line `__. .. py:currentmodule:: symplyphysics.laws.dynamics.deformation.elastic_energy_density_of_compression_via_strain .. py:data:: elastic_energy_density Elastic energy of the deformed body per unit of its volume. See :attr:`~symplyphysics.symbols.basic.energy_density` Symbol: :code:`w` Latex: :math:`w` Dimension: :code:`energy/volume` .. py:data:: young_modulus :attr:`~symplyphysics.symbols.classical_mechanics.young_modulus` of the body's material. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`pressure` .. py:data:: engineering_normal_strain :attr:`~symplyphysics.symbols.classical_mechanics.engineering_normal_strain` of the deformed body. Symbol: :code:`e` Latex: :math:`e` Dimension: :code:`dimensionless` .. py:data:: law :code:`w = E * e^2 / 2` Latex: .. math:: w = \frac{E e^{2}}{2}