Concentration of intrinsic charge carriers ========================================== In the absence of external influences (lighting, electric field, etc.), there is a nonzero concentration of free charge carriers in the semiconductor. **Notation:** #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. **Conditions:** #. There are no external influences, such as lighting, electric field, etc. **Links:** #. `University Wafer, Intrinsic carrier concentration `_. .. py:currentmodule:: symplyphysics.laws.condensed_matter.concentration_of_intrinsic_charge_carriers .. py:data:: charge_carriers_concentration :attr:`~symplyphysics.symbols.basic.number_density` of intrinsic charge carriers. Symbol: :code:`n` Latex: :math:`n` Dimension: :code:`1/volume` .. py:data:: density_of_states_in_conduction_band Effective :attr:`~symplyphysics.symbols.chemistry.density_of_states` in the conduction band. Symbol: :code:`N_c` Latex: :math:`N_\text{c}` Dimension: :code:`1/volume` .. py:data:: density_of_states_in_valence_band Effective :attr:`~symplyphysics.symbols.chemistry.density_of_states` in the valence band. Symbol: :code:`N_v` Latex: :math:`N_\text{v}` Dimension: :code:`1/volume` .. py:data:: temperature :attr:`~symplyphysics.symbols.thermodynamics.temperature` of the semiconductor. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: band_gap :attr:`~symplyphysics.symbols.chemistry.band_gap` of the semiconductor. Symbol: :code:`E_g` Latex: :math:`E_\text{g}` Dimension: :code:`energy` .. py:data:: law :code:`n = sqrt(N_c * N_v) * exp(-E_g / (2 * k_B * T))` Latex: .. math:: n = \sqrt{N_\text{c} N_\text{v}} \exp{\left(- \frac{E_\text{g}}{2 k_\text{B} T} \right)}