Volumetric ionization coefficient of neutral particles by electrons =================================================================== At a certain voltage, the gas discharge becomes independent. To find this voltage, it is necessary to know the (volumetric) ionization coefficient. And it, in turn, depends on the energy distribution of electrons and can be approximated by the expression below. **Links:** #. `StudFiles, formula 1.12 `__. .. TODO: find English link TODO: move to `ionization` folder? .. py:currentmodule:: symplyphysics.laws.chemistry.volumetric_ionization_coefficient_of_neutral_particles_by_electrons .. py:data:: ionization_coefficient :attr:`~symplyphysics.symbols.chemistry.ionization_coefficient` of the gas. Symbol: :code:`alpha` Latex: :math:`\alpha` Dimension: :code:`1/length` .. py:data:: first_constant The first gas constant used in this model. Symbol: :code:`A` Latex: :math:`A` Dimension: :code:`1/(length*pressure)` .. py:data:: second_constant The second gas constant used in this model. Symbol: :code:`B` Latex: :math:`B` Dimension: :code:`voltage/(length*pressure)` .. py:data:: pressure :attr:`~symplyphysics.symbols.classical_mechanics.pressure` of the gas. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`pressure` .. py:data:: electric_field_strength :attr:`~symplyphysics.symbols.electrodynamics.electric_field_strength`. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`voltage/length` .. py:data:: law :code:`alpha = A * p * exp(-B * p / E)` Latex: .. math:: \alpha = A p \exp{\left(- \frac{B p}{E} \right)}