Electron distribution function in gas plasma per Maxwell ======================================================== In a gas discharge, electrons have a wide range of energies, which is described by the electron energy distribution function. Electrons in a gas-discharge plasma acquire their energy under the action of an electric field. Energy consumption occurs due to elastic and, especially, inelastic collisions with atoms. In addition, energy exchange between electrons is also possible in plasma. Depending on the relationship between all these factors, different electron energy distributions are established. Under equilibrium conditions, the Maxwell distribution is most common. **Notation:** #. :math:`e` (:code:`e`) is :attr:`~symplyphysics.quantities.elementary_charge`. **Links:** #. `Comsol, possible similar formula here `__. .. TODO: find a more suitable link .. py:currentmodule:: symplyphysics.laws.chemistry.electron_distribution_function_in_gas_plasma_by_maxwell .. py:data:: distribution_function Electron distribution function. Symbol: :code:`f` Latex: :math:`f` Dimension: :code:`dimensionless` .. py:data:: voltage :attr:`~symplyphysics.symbols.electrodynamics.voltage` between electrodes. Symbol: :code:`V` Latex: :math:`V` Dimension: :code:`voltage` .. py:data:: electron_energy Electron :attr:`~symplyphysics.symbols.basic.energy`. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: energy_constant Constant equal to :math:`2.07 \, \text{eV}`. Symbol: :code:`E_0` Latex: :math:`E_0` Dimension: :code:`energy` .. py:data:: law :code:`f = E_0 * sqrt(e * V) / E^(3/2) * exp(-1.55 * e * V / E)` Latex: .. math:: f = \frac{E_0 \sqrt{e V}}{E^{\frac{3}{2}}} \exp{\left(- \frac{1.55 e V}{E} \right)}