Energy of electron in hydrogen atom per Bohr ============================================ In the Bohr's model of the Hydrogen atom, the electron is viewed as moving along a circular orbit around the nucleus (which was further generalized onto elliptical orbits by Sommerfeld). In the circular case, the energy of the atom can be expressed directly as a function of the electron's orbit radius. **Notation:** #. :math:`e` (:code:`e`) is :attr:`~symplyphysics.quantities.elementary_charge`. #. :math:`\varepsilon_0` (:code:`epsilon_0`) is :attr:`~symplyphysics.quantities.vacuum_permittivity`. **Links:** #. Formula 13.8 on p. 71 of "General Course of Physics" (Obschiy kurs fiziki), vol. 5, part 1 by Sivukhin D.V. (1979). .. TODO: find English link .. py:currentmodule:: symplyphysics.laws.chemistry.electrochemistry.energy_of_electron_in_hydrogen_atom_per_bohr .. py:data:: energy :attr:`~symplyphysics.symbols.basic.energy` of the Hydrogen atom. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`energy` .. py:data:: radius :attr:`~symplyphysics.symbols.classical_mechanics.radius` of the electron's orbit. Symbol: :code:`r` Latex: :math:`r` Dimension: :code:`length` .. py:data:: law :code:`E = e^2 / (8 * pi * epsilon_0 * r)` Latex: .. math:: E = \frac{e^{2}}{8 \pi \varepsilon_0 r}