Cross section of interaction in recharge model ============================================== The effective cross section is a physical quantity characterizing the probability of transition of a system of two interacting particles to a certain final state, a quantitative characteristic of the acts of collision of particles of a stream hitting a target with target particles. The effective cross-section has the dimension of the area. **Notation:** #. :math:`a_0` (:code:`a_0`) is :attr:`~symplyphysics.quantities.bohr_radius`. #. :math:`\mathrm{IE}_\text{H}` (:code:`IE_h`) is :attr:`~symplyphysics.quantities.hydrogen_ionization_energy`. #. :math:`k_\text{B}` (:code:`k_B`) is :attr:`~symplyphysics.quantities.boltzmann_constant`. #. :math:`e` (:code:`e`) is :attr:`~symplyphysics.quantities.elementary_charge`. .. TODO: find link TODO: move to `ionization` folder? .. py:currentmodule:: symplyphysics.laws.chemistry.cross_section_of_interaction_in_recharge_model .. py:data:: cross_section :attr:`~symplyphysics.symbols.chemistry.cross_section` of interaction of particles. Symbol: :code:`sigma` Latex: :math:`\sigma` Dimension: :code:`area` .. py:data:: ionization_energy Ionization :attr:`~symplyphysics.symbols.basic.energy` of the particles. Symbol: :code:`E_i` Latex: :math:`E_\text{i}` Dimension: :code:`energy` .. py:data:: molecular_mass :attr:`~symplyphysics.symbols.basic.mass` of a single gas particle. Symbol: :code:`m` Latex: :math:`m` Dimension: :code:`mass` .. py:data:: pressure Gas :attr:`~symplyphysics.symbols.classical_mechanics.pressure`. Symbol: :code:`p` Latex: :math:`p` Dimension: :code:`pressure` .. py:data:: temperature Gas :attr:`~symplyphysics.symbols.thermodynamics.temperature`. Symbol: :code:`T` Latex: :math:`T` Dimension: :code:`temperature` .. py:data:: electric_field_strength :attr:`~symplyphysics.symbols.electrodynamics.electric_field_strength`. Symbol: :code:`E` Latex: :math:`E` Dimension: :code:`voltage/length` .. py:data:: law :code:`sigma = pi * a_0^2 * IE_h / E_i * log(sqrt(3 * k_B * T / m) * sqrt(E_i / IE_h) * sigma * p * m / (2 * k_B * T * e * E))^2` Latex: .. math:: \sigma = \pi a_0^{2} \frac{\mathrm{IE}_\text{H}}{E_\text{i}} \log \left( \sqrt{\frac{3 k_\text{B} T}{m}} \sqrt{\frac{E_\text{i}}{\mathrm{IE}_\text{H}}} \frac{\sigma p m}{2 k_\text{B} T e E} \right)^{2}