Cross section of interaction in Coulomb's interaction model =========================================================== The effective cross section is a physical quantity characterizing the probability of transition of a system of two interacting particles to a certain final state, a quantitative characteristic of the acts of collision of particles of a stream hitting a target with target particles. The effective cross-section has the dimension of the area. In a magnetron, this value can be calculated if you know the ionization energy of gas atoms. **Notation:** #. :math:`e` (:code:`e`) is :attr:`~symplyphysics.quantities.elementary_charge`. #. :math:`\varepsilon_0` (:code:`epsilon_0`) is :attr:`~symplyphysics.quantities.vacuum_permittivity`. .. TODO: find link TODO: move to `magnetron` folder? .. py:currentmodule:: symplyphysics.laws.chemistry.cross_section_of_interaction_in_coulomb_interaction_model .. py:data:: cross_sectional_area_of_interaction :attr:`~symplyphysics.symbols.chemistry.cross_section` of the interaction of particles. Symbol: :code:`sigma` Latex: :math:`\sigma` Dimension: :code:`area` .. py:data:: ionization_energy Ionization :attr:`~symplyphysics.symbols.basic.energy` of atoms expressed in :attr:`~symplyphysics.symbols.electrodynamics.voltage`. Symbol: :code:`E_i` Latex: :math:`E_\text{i}` Dimension: :code:`voltage` .. py:data:: law :code:`sigma = e^2 / (2 * pi * epsilon_0^2 * E_i^2)` Latex: .. math:: \sigma = \frac{e^{2}}{2 \pi \varepsilon_0^{2} E_\text{i}^{2}}