Relative rocket speed from mass change and effective exhaust speed ================================================================== The Tsiolkovsky formula determines the speed that an aircraft develops due to the constant-direction thrust of the rocket engine in the absence of other forces. The generalized Tsiolkovsky formula is valid for a rocket flying at a speed close to the speed of light. **Notation:** #. :math:`c` (:code:`c`) is :attr:`~symplyphysics.quantities.speed_of_light`. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.astronomy.relativistic.relative_rocket_speed_from_mass_change_and_effective_exhaust_speed .. py:data:: speed Final :attr:`~symplyphysics.symbols.classical_mechanics.speed` of the rocket in the inertial reference frame where the rocket started at rest. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: effective_exhaust_speed Effective exhaust :attr:`~symplyphysics.symbols.classical_mechanics.speed` of the rocket engine. Symbol: :code:`v_e` Latex: :math:`v_\text{e}` Dimension: :code:`velocity` .. py:data:: initial_mass Initial :attr:`~symplyphysics.symbols.basic.mass` of the rocket. Symbol: :code:`m_0` Latex: :math:`m_{0}` Dimension: :code:`mass` .. py:data:: final_mass Final :attr:`~symplyphysics.symbols.basic.mass` of the rocket. Symbol: :code:`m_1` Latex: :math:`m_{1}` Dimension: :code:`mass` .. py:data:: law :code:`m_1 / m_0 = ((1 - v / c) / (1 + v / c))^(c / (2 * v_e))` Latex: .. math:: \frac{m_{1}}{m_{0}} = \left(\frac{1 - \frac{v}{c}}{1 + \frac{v}{c}}\right)^{\frac{c}{2 v_\text{e}}}