Ratio of luminosities from ratio of masses of stars =================================================== The comparisons of masses and luminosities for most stars revealed the following relationship: luminosity is approximately proportional to the fourth power of mass. **Conditions:** #. The masses must obey the inequality :math:`0.43 m_1 < m_2 < 2 m_1`, see link for more information. The symbols :math:`m_1, m_2` refer to those defined below. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.laws.astronomy.ratio_of_luminosities_from_ratio_of_masses_of_stars .. py:data:: first_mass :attr:`~symplyphysics.symbols.basic.mass` of the first star. Symbol: :code:`m_1` Latex: :math:`m_{1}` Dimension: :code:`mass` .. py:data:: second_mass :attr:`~symplyphysics.symbols.basic.mass` of the second star. Symbol: :code:`m_2` Latex: :math:`m_{2}` Dimension: :code:`mass` .. py:data:: first_luminosity :attr:`~symplyphysics.symbols.astronomy.luminosity` of the first star. Symbol: :code:`L_1` Latex: :math:`L_{1}` Dimension: :code:`power` .. py:data:: second_luminosity :attr:`~symplyphysics.symbols.astronomy.luminosity` of the second star. Symbol: :code:`L_2` Latex: :math:`L_{2}` Dimension: :code:`power` .. py:data:: law :code:`L_2 / L_1 = (m_2 / m_1)^4` Latex: .. math:: \frac{L_{2}}{L_{1}} = \left(\frac{m_{2}}{m_{1}}\right)^{4}