Latitude from zenith angle and declination ========================================== Knowing the zenith angles and declinations of the northern and southern stars, it is possible to determine the latitude of the observation site. **Notes:** #. Northern star is any star north of the zenith with known declination. #. Southern star is any star south of the zenith with known declination. **Conditions:** #. Both stars are at upper transit (culmination). .. TODO find link .. py:currentmodule:: symplyphysics.laws.astronomy.latitude_from_zenith_distances_and_declinations .. py:data:: latitude :attr:`~symplyphysics.symbols.classical_mechanics.latitude` of the observation site. Symbol: :code:`phi` Latex: :math:`\phi` Dimension: :code:`angle` .. py:data:: north_zenith_angle :attr:`~symplyphysics.symbols.astronomy.zenith_angle` of the northern star. Symbol: :code:`theta_N` Latex: :math:`\theta_\text{N}` Dimension: :code:`angle` .. py:data:: south_zenith_angle :attr:`~symplyphysics.symbols.astronomy.zenith_angle` of the southern star. Symbol: :code:`theta_S` Latex: :math:`\theta_\text{S}` Dimension: :code:`angle` .. py:data:: north_declination :attr:`~symplyphysics.symbols.astronomy.declination` of the northern star. Symbol: :code:`delta_N` Latex: :math:`\delta_\text{N}` Dimension: :code:`angle` .. py:data:: south_declination :attr:`~symplyphysics.symbols.astronomy.declination` of the southern star. Symbol: :code:`delta_S` Latex: :math:`\delta_\text{S}` Dimension: :code:`angle` .. py:data:: law :code:`phi = (theta_S - theta_N + delta_S + delta_N) / 2` Latex: .. math:: \phi = \frac{\theta_\text{S} - \theta_\text{N} + \delta_\text{S} + \delta_\text{N}}{2}