Wave equation in one dimension ============================== The *wave equation* is a second-order linear partial differential equation used to describe the propagation of waves, including standing wave fields such as mechanical or electromagnetic waves. **Notes:** #. This equation is called one-dimensional because the displacement function depends only on one spatial dimension. **Links:** #. `Wikipedia `__. .. py:currentmodule:: symplyphysics.definitions.wave_equation_in_one_dimension .. py:data:: position :attr:`~symplyphysics.symbols.classical_mechanics.position`, or spatial variable. Symbol: :code:`x` Latex: :math:`x` Dimension: :code:`length` .. py:data:: time :attr:`~symplyphysics.symbols.basic.time`. Symbol: :code:`t` Latex: :math:`t` Dimension: :code:`time` .. py:data:: displacement Factor representing a displacement from rest position, which could be pressure, position, electric field, etc., as a function of position and time. Symbol: :code:`u(x, t)` Latex: :math:`u{\left(x,t \right)}` Dimension: :code:`any_dimension` .. py:data:: phase_speed :attr:`~symplyphysics.symbols.classical_mechanics.phase_speed` of the wave. Symbol: :code:`v` Latex: :math:`v` Dimension: :code:`velocity` .. py:data:: definition :code:`Derivative(u(x, t), (x, 2)) = Derivative(u(x, t), (t, 2)) / v^2` Latex: .. math:: \frac{\partial^{2}}{\partial x^{2}} u{\left(x,t \right)} = \frac{\frac{\partial^{2}}{\partial t^{2}} u{\left(x,t \right)}}{v^{2}}