Vector area is unit normal times scalar area ============================================ **Vector area**, or **oriented area**, is a vector quantity equal to the surface integral of the surface normal. If the unit normal is constant at all points of the surface, integral can be reduced to a product of the unit normal to the scalar area of the surface. **Notes:** #. If the normal changes direction across the surface, you can divide the surface into parts of constant unit normal and sum up the vector areas of all parts: .. math:: \vec A = \sum_i \vec A_i = \sum_i \vec n_i A_i Alternatively, use the surface integral that sums up infinitesimal vector areas across the surface: .. math:: \vec A = \iint \limits_S d \vec A = \iint \limits_S \vec n (\vec r) dA **Conditions:** #. The surface is bounded (i.e. finite). #. The surface normal is the same thoughout the given region, which can be achieved by choosing a small enough (or infinitesimal) surface. **Links:** #. `Wikipedia — Vector area `__. .. py:currentmodule:: symplyphysics.definitions.vector.vector_area_is_unit_normal_times_scalar_area .. py:data:: vector_area Vector :attr:`~symplyphysics.symbols.classical_mechanics.area` pertaining to the given region. Symbol: :code:`A` Latex: :math:`{\vec A}` Dimension: :code:`area` .. py:data:: unit_normal Unit vector `normal `__ to the surface. **Notes:** #. :math:`\left \Vert \vec n \right \Vert = 1`, i.e. it has unit magnitude. Symbol: :code:`n` Latex: :math:`{\vec n}` Dimension: :code:`dimensionless` .. py:data:: scalar_area Scalar :attr:`~symplyphysics.symbols.classical_mechanics.area` of the given region. Symbol: :code:`A` Latex: :math:`A` Dimension: :code:`area` .. py:data:: law :code:`A = n * A` Latex: .. math:: {\vec A} = {\vec n} A